Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Metab ; 5(2): 207-218, 2023 02.
Article in English | MEDLINE | ID: mdl-36732622

ABSTRACT

The retina is highly metabolically active, relying on glucose uptake and aerobic glycolysis. Situated in close contact to photoreceptors, a key function of cells in the retinal pigment epithelium (RPE) is phagocytosis of damaged photoreceptor outer segments (POS). Here we identify RPE as a local source of insulin in the eye that is stimulated by POS phagocytosis. We show that Ins2 messenger RNA and insulin protein are produced by RPE cells and that this production correlates with RPE phagocytosis of POS. Genetic deletion of phagocytic receptors ('loss of function') reduces Ins2, whereas increasing the levels of the phagocytic receptor MerTK ('gain of function') increases Ins2 production in male mice. Contrary to pancreas-derived systemic insulin, RPE-derived local insulin is stimulated during starvation, which also increases RPE phagocytosis. Global or RPE-specific Ins2 gene deletion decreases retinal glucose uptake in starved male mice, dysregulates retinal physiology, causes defects in phototransduction and exacerbates photoreceptor loss in a mouse model of retinitis pigmentosa. Collectively, these data identify RPE cells as a phagocytosis-induced local source of insulin in the retina, with the potential to influence retinal physiology and disease.


Subject(s)
Insulin , Receptor Protein-Tyrosine Kinases , Male , Mice , Animals , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Insulin/metabolism , Retina/metabolism , Phagocytosis/physiology , Glucose/metabolism
2.
Cell ; 185(26): 4887-4903.e17, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36563662

ABSTRACT

Our bodies turn over billions of cells daily via apoptosis and are in turn cleared by phagocytes via the process of "efferocytosis." Defects in efferocytosis are now linked to various inflammatory diseases. Here, we designed a strategy to boost efferocytosis, denoted "chimeric receptor for efferocytosis" (CHEF). We fused a specific signaling domain within the cytoplasmic adapter protein ELMO1 to the extracellular phosphatidylserine recognition domains of the efferocytic receptors BAI1 or TIM4, generating BELMO and TELMO, respectively. CHEF-expressing phagocytes display a striking increase in efferocytosis. In mouse models of inflammation, BELMO expression attenuates colitis, hepatotoxicity, and nephrotoxicity. In mechanistic studies, BELMO increases ER-resident enzymes and chaperones to overcome protein-folding-associated toxicity, which was further validated in a model of ER-stress-induced renal ischemia-reperfusion injury. Finally, TELMO introduction after onset of kidney injury significantly reduced fibrosis. Collectively, these data advance a concept of chimeric efferocytic receptors to boost efferocytosis and dampen inflammation.


Subject(s)
Macrophages , Phagocytosis , Animals , Mice , Macrophages/metabolism , Inflammation/metabolism , Phagocytes/metabolism , Carrier Proteins/metabolism , Apoptosis , Adaptor Proteins, Signal Transducing/metabolism
3.
Sci Immunol ; 7(71): eabm4032, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35559667

ABSTRACT

Epithelial tissues such as lung and skin are exposed to the environment and therefore particularly vulnerable to damage during injury or infection. Rapid repair is therefore essential to restore function and organ homeostasis. Dysregulated epithelial tissue repair occurs in several human disease states, yet how individual cell types communicate and interact to coordinate tissue regeneration is incompletely understood. Here, we show that pannexin 1 (Panx1), a cell membrane channel activated by caspases in dying cells, drives efficient epithelial regeneration after tissue injury by regulating injury-induced epithelial proliferation. Lung airway epithelial injury promotes the Panx1-dependent release of factors including ATP, from dying epithelial cells, which regulates macrophage phenotype after injury. This process, in turn, induces a reparative response in tissue macrophages that includes the induction of the soluble mitogen amphiregulin, which promotes injury-induced epithelial proliferation. Analysis of regenerating lung epithelium identified Panx1-dependent induction of Nras and Bcas2, both of which positively promoted epithelial proliferation and tissue regeneration in vivo. We also established that this role of Panx1 in boosting epithelial repair after injury is conserved between mouse lung and zebrafish tailfin. These data identify a Panx1-mediated communication circuit between epithelial cells and macrophages as a key step in promoting epithelial regeneration after injury.


Subject(s)
Connexins , Epithelial Cells , Nerve Tissue Proteins , Wounds and Injuries , Animals , Connexins/genetics , Connexins/metabolism , Epithelial Cells/cytology , Lung/metabolism , Mice , Neoplasm Proteins , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Zebrafish
4.
Nature ; 596(7871): 262-267, 2021 08.
Article in English | MEDLINE | ID: mdl-34349263

ABSTRACT

Regulated cell death is an integral part of life, and has broad effects on organism development and homeostasis1. Malfunctions within the regulated cell death process, including the clearance of dying cells, can manifest in diverse pathologies throughout various tissues including the gastrointestinal tract2. A long appreciated, yet elusively defined relationship exists between cell death and gastrointestinal pathologies with an underlying microbial component3-6, but the direct effect of dying mammalian cells on bacterial growth is unclear. Here we advance a concept that several Enterobacteriaceae, including patient-derived clinical isolates, have an efficient growth strategy to exploit soluble factors that are released from dying gut epithelial cells. Mammalian nutrients released after caspase-3/7-dependent apoptosis boosts the growth of multiple Enterobacteriaceae and is observed using primary mouse colonic tissue, mouse and human cell lines, several apoptotic triggers, and in conventional as well as germ-free mice in vivo. The mammalian cell death nutrients induce a core transcriptional response in pathogenic Salmonella, and we identify the pyruvate formate-lyase-encoding pflB gene as a key driver of bacterial colonization in three contexts: a foodborne infection model, a TNF- and A20-dependent cell death model, and a chemotherapy-induced mucositis model. These findings introduce a new layer to the complex host-pathogen interaction, in which death-induced nutrient release acts as a source of fuel for intestinal bacteria, with implications for gut inflammation and cytotoxic chemotherapy treatment.


Subject(s)
Apoptosis , Enterobacteriaceae/growth & development , Enterobacteriaceae/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Intestines/cytology , Intestines/microbiology , Acetyltransferases/genetics , Acetyltransferases/metabolism , Animals , Caspase 3/metabolism , Caspase 7/metabolism , Cell Line , Disease Models, Animal , Epithelial Cells/pathology , Female , Foodborne Diseases/microbiology , Germ-Free Life , Host-Pathogen Interactions , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Male , Mice , Mucositis/chemically induced , Salmonella/enzymology , Salmonella/genetics , Salmonella/growth & development , Salmonella/metabolism , Transcriptome , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor-alpha/metabolism
5.
Nature ; 580(7801): 130-135, 2020 04.
Article in English | MEDLINE | ID: mdl-32238926

ABSTRACT

Caspase-dependent apoptosis accounts for approximately 90% of homeostatic cell turnover in the body1, and regulates inflammation, cell proliferation, and tissue regeneration2-4. How apoptotic cells mediate such diverse effects is not fully understood. Here we profiled the apoptotic metabolite secretome and determined its effects on the tissue neighbourhood. We show that apoptotic lymphocytes and macrophages release specific metabolites, while retaining their membrane integrity. A subset of these metabolites is also shared across different primary cells and cell lines after the induction of apoptosis by different stimuli. Mechanistically, the apoptotic metabolite secretome is not simply due to passive emptying of cellular contents and instead is a regulated process. Caspase-mediated opening of pannexin 1 channels at the plasma membrane facilitated the release of a select subset of metabolites. In addition, certain metabolic pathways continued to remain active during apoptosis, with the release of only select metabolites from a given pathway. Functionally, the apoptotic metabolite secretome induced specific gene programs in healthy neighbouring cells, including suppression of inflammation, cell proliferation, and wound healing. Furthermore, a cocktail of apoptotic metabolites reduced disease severity in mouse models of inflammatory arthritis and lung-graft rejection. These data advance the concept that apoptotic cells are not inert cells waiting for removal, but instead release metabolites as 'good-bye' signals to actively modulate outcomes in tissues.


Subject(s)
Apoptosis/physiology , Cellular Microenvironment , Second Messenger Systems/physiology , Animals , Arthritis , Caspases/metabolism , Cell Line , Cell Proliferation/genetics , Cell Survival/genetics , Connexins/metabolism , Disease Models, Animal , Graft Rejection , Humans , Inflammation/genetics , Lung Transplantation , Lymphocytes/enzymology , Lymphocytes/metabolism , Macrophages/enzymology , Macrophages/metabolism , Mice , Nerve Tissue Proteins/metabolism , Phagocytes/metabolism , Wound Healing/genetics
6.
Nat Cell Biol ; 21(12): 1532-1543, 2019 12.
Article in English | MEDLINE | ID: mdl-31792382

ABSTRACT

Apoptotic cell clearance (efferocytosis) elicits an anti-inflammatory response by phagocytes, but the mechanisms that underlie this response are still being defined. Here, we uncover a chloride-sensing signalling pathway that controls both the phagocyte 'appetite' and its anti-inflammatory response. Efferocytosis transcriptionally altered the genes that encode the solute carrier (SLC) proteins SLC12A2 and SLC12A4. Interfering with SLC12A2 expression or function resulted in a significant increase in apoptotic corpse uptake per phagocyte, whereas the loss of SLC12A4 inhibited corpse uptake. In SLC12A2-deficient phagocytes, the canonical anti-inflammatory program was replaced by pro-inflammatory and oxidative-stress-associated gene programs. This 'switch' to pro-inflammatory sensing of apoptotic cells resulted from the disruption of the chloride-sensing pathway (and not due to corpse overload or poor degradation), including the chloride-sensing kinases WNK1, OSR1 and SPAK-which function upstream of SLC12A2-had a similar effect on efferocytosis. Collectively, the WNK1-OSR1-SPAK-SLC12A2/SLC12A4 chloride-sensing pathway and chloride flux in phagocytes are key modifiers of the manner in which phagocytes interpret the engulfed apoptotic corpse.


Subject(s)
Apoptosis/physiology , Chlorides/metabolism , Inflammation/physiopathology , Signal Transduction/physiology , Animals , Apoptosis/genetics , Biological Transport/genetics , Biological Transport/physiology , Cell Line , Cell Line, Tumor , Humans , Inflammation/genetics , Inflammation/metabolism , Jurkat Cells , Mice , Mice, Inbred C57BL , Oxidative Stress/genetics , Oxidative Stress/physiology , Phagocytes/physiology , Phagocytosis/genetics , Phagocytosis/physiology , Signal Transduction/genetics , Sodium-Potassium-Chloride Symporters/genetics , Transcription, Genetic/genetics , Transcription, Genetic/physiology
7.
Metabolism ; 78: 69-79, 2018 01.
Article in English | MEDLINE | ID: mdl-28920862

ABSTRACT

OBJECTIVE: Enhanced activation of cell specific mineralocorticoid receptors (MRs) in obesity plays a key role in the development of cardiovascular disease including cardiac diastolic dysfunction as a critical prognosticator. Our previous investigations demonstrated that selective endothelium MR activation promotes a maladaptive inflammatory response and fibrosis in cardiovascular tissue in female mice fed a western diet (WD), and this was associated with expression and activation of the epithelial sodium channel on the surface of endothelial cells (EnNaC). However, the specific role of EnNaC signaling in the development of cardiac stiffness and diastolic dysfunction has not been examined. We hypothesized that targeted inhibition of EnNaC with low dose amiloride would prevent WD-induced diastolic dysfunction by suppressing abnormal endothelial permeability, inflammation and oxidative stress, and myocardial fibrosis. MATERIALS/METHODS: Four week-old female C57BL6/J mice were fed a WD with or without a low dose of amiloride (1mg/kg/day) for 16weeks. Left ventricular cardiac function was evaluated by magnetic resonance imaging. In addition, we examined coronary vessel and cardiac remodeling, fibrosis, macrophage infiltration using immunohistochemistry, western blot and real time PCR. RESULTS: Amiloride, an antagonist of EnNaC, attenuated WD-induced impairment of left ventricular initial filling rate and relaxation time. Cardiac diastolic dysfunction was associated with increases in coronary endothelium remodeling and permeability that paralleled WD-induced increases in F-actin and fibronectin, decreased expression of claudin-5 and occludin, and increased macrophage recruitment, M1 polarization, cardiac oxidative stress, fibrosis and maladaptive remodeling. CONCLUSION: Our data support the concept that EnNaC activation mediates endothelium permeability which, in turn, promotes macrophage infiltration, M1 polarization, and oxidative stress, resulting in cardiac fibrosis and diastolic dysfunction in females with diet induced obesity.


Subject(s)
Endothelium/metabolism , Epithelial Sodium Channels/metabolism , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Signal Transduction/physiology , Ventricular Dysfunction, Left/metabolism , Ventricular Function, Left/physiology , Actins/metabolism , Animals , Diet, Western/adverse effects , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Fibrosis/metabolism , Fibrosis/physiopathology , Inflammation/metabolism , Inflammation/physiopathology , Mice , Mice, Inbred C57BL , Mice, Obese , Myocardium/metabolism , Obesity/metabolism , Obesity/physiopathology , Oxidative Stress/physiology , Ventricular Dysfunction, Left/physiopathology
8.
Front Physiol ; 8: 456, 2017.
Article in English | MEDLINE | ID: mdl-28713285

ABSTRACT

Obese premenopausal women lose their sex related cardiovascular disease protection and develop greater arterial stiffening than age matched men. In female mice, we have shown that consumption of a Western diet (WD), high in fat and refined sugars, is associated with endothelial dysfunction and vascular stiffening, which occur via activation of mineralocorticoid receptors and associated increases in epithelial Na+ channel (ENaC) activity on endothelial cells (EnNaC). Herein our aim was to determine the effect that reducing EnNaC activity with a very-low-dose of amiloride would have on decreasing endothelial and arterial stiffness in young female mice consuming a WD. To this end, we fed female mice either a WD or control diet and treated them with or without a very-low-dose of the ENaC-inhibitor amiloride (1 mg/kg/day) in the drinking water for 20 weeks beginning at 4 weeks of age. Mice consuming a WD were heavier and had greater percent body fat, proteinuria, and aortic stiffness as assessed by pulse-wave velocity than those fed control diet. Treatment with amiloride did not affect body weight, body composition, blood pressure, urinary sodium excretion, or insulin sensitivity, but significantly reduced the development of endothelial and aortic stiffness, aortic fibrosis, aortic oxidative stress, and mesenteric resistance artery EnNaC abundance and proteinuria in WD-fed mice. Amiloride also improved endothelial-dependent vasodilatory responses in the resistance arteries of WD-fed mice. These results indicate that a very-low-dose of amiloride, not affecting blood pressure, is sufficient to improve endothelial function and reduce aortic stiffness in female mice fed a WD, and suggest that EnNaC-inhibition may be sufficient to ameliorate the pathological vascular stiffening effects of WD-induced obesity in females.

9.
Am J Physiol Regul Integr Comp Physiol ; 313(2): R67-R77, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28539355

ABSTRACT

Consumption of a high-fat, high-fructose diet [Western diet (WD)] promotes vascular stiffness, a critical factor in the development of cardiovascular disease (CVD). Obese and diabetic women exhibit greater arterial stiffness than men, which contributes to the increased incidence of CVD in these women. Furthermore, high-fructose diets result in elevated plasma concentrations of uric acid via xanthine oxidase (XO) activation, and uric acid elevation is also associated with increased vascular stiffness. However, the mechanisms by which increased xanthine oxidase activity and uric acid contribute to vascular stiffness in obese females remain to be fully uncovered. Accordingly, we examined the impact of XO inhibition on endothelial function and vascular stiffness in female C57BL/6J mice fed a WD or regular chow for 16 wk. WD feeding resulted in increased arterial stiffness, measured by atomic force microscopy in aortic explants (16.19 ± 1.72 vs. 5.21 ± 0.54 kPa, P < 0.05), as well as abnormal aortic endothelium-dependent and -independent vasorelaxation. XO inhibition with allopurinol (widely utilized in the clinical setting) substantially improved vascular relaxation and attenuated stiffness (16.9 ± 0.50 vs. 3.44 ± 0.50 kPa, P < 0.05) while simultaneously lowering serum uric acid levels (0.55 ± 0.98 vs. 0.21 ± 0.04 mg/dL, P < 0.05). In addition, allopurinol improved WD-induced markers of fibrosis and oxidative stress in aortic tissue, as analyzed by immunohistochemistry and transmission electronic microscopy. Collectively, these results demonstrate that XO inhibition protects against WD-induced vascular oxidative stress, fibrosis, impaired vasorelaxation, and aortic stiffness in females. Furthermore, excessive oxidative stress resulting from XO activation appears to play a key role in mediating vascular dysfunction induced by chronic exposure to WD consumption in females.


Subject(s)
Allopurinol/administration & dosage , Aorta/physiology , Diet, Western , Uric Acid/blood , Vascular Stiffness/physiology , Vasodilation/physiology , Xanthine Oxidase/metabolism , Animals , Aorta/drug effects , Enzyme Inhibitors/administration & dosage , Female , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Oxidative Stress/physiology , Vascular Stiffness/drug effects , Vasodilation/drug effects , Vasomotor System/drug effects , Vasomotor System/physiology , Xanthine Oxidase/antagonists & inhibitors
10.
Cardiovasc Diabetol ; 16(1): 61, 2017 05 05.
Article in English | MEDLINE | ID: mdl-28476142

ABSTRACT

BACKGROUND: Diastolic dysfunction (DD), a hallmark of obesity and primary defect in heart failure with preserved ejection fraction, is a predictor of future cardiovascular events. We previously reported that linagliptin, a dipeptidyl peptidase-4 inhibitor, improved DD in Zucker Obese rats, a genetic model of obesity and hypertension. Here we investigated the cardioprotective effects of linagliptin on development of DD in western diet (WD)-fed mice, a clinically relevant model of overnutrition and activation of the renin-angiotensin-aldosterone system. METHODS: Female C56Bl/6 J mice were fed an obesogenic WD high in fat and simple sugars, and supplemented or not with linagliptin for 16 weeks. RESULTS: WD induced oxidative stress, inflammation, upregulation of Angiotensin II type 1 receptor and mineralocorticoid receptor (MR) expression, interstitial fibrosis, ultrastructural abnormalities and DD. Linagliptin inhibited cardiac DPP-4 activity and prevented molecular impairments and associated functional and structural abnormalities. Further, WD upregulated the expression of TRAF3IP2, a cytoplasmic adapter molecule and a regulator of multiple inflammatory mediators. Linagliptin inhibited its expression, activation of its downstream signaling intermediates NF-κB, AP-1 and p38-MAPK, and induction of multiple inflammatory mediators and growth factors that are known to contribute to development and progression of hypertrophy, fibrosis and contractile dysfunction. Linagliptin also inhibited WD-induced collagens I and III expression. Supporting these in vivo observations, linagliptin inhibited aldosterone-mediated MR-dependent oxidative stress, upregulation of TRAF3IP2, proinflammatory cytokine, and growth factor expression, and collagen induction in cultured primary cardiac fibroblasts. More importantly, linagliptin inhibited aldosterone-induced fibroblast activation and migration. CONCLUSIONS: Together, these in vivo and in vitro results suggest that inhibition of DPP-4 activity by linagliptin reverses WD-induced DD, possibly by targeting TRAF3IP2 expression and its downstream inflammatory signaling.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cardiomyopathies/prevention & control , Diet, Western/adverse effects , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Linagliptin/pharmacology , Myocarditis/prevention & control , Myocardium/enzymology , Adaptor Proteins, Signal Transducing/genetics , Animals , Cardiomyopathies/enzymology , Cardiomyopathies/etiology , Cardiomyopathies/physiopathology , Cells, Cultured , Diastole , Disease Models, Animal , Down-Regulation , Female , Fibrosis , Mice, Inbred C57BL , Myocarditis/enzymology , Myocarditis/etiology , Myocarditis/physiopathology , Myocardium/ultrastructure , NF-kappa B/metabolism , Nitrosative Stress/drug effects , Obesity/etiology , Oxidative Stress/drug effects , Recovery of Function , Signal Transduction/drug effects , Time Factors , Transcription Factor AP-1/metabolism , Ventricular Dysfunction, Left/enzymology , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/prevention & control , Ventricular Function, Left/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
11.
Endocrinology ; 158(6): 1875-1885, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28430983

ABSTRACT

The role of estrogen receptor-α (ERα) signaling in the vasculature of females has been described under different experimental conditions and our group recently reported that lack of endothelial cell (EC) ERα in female mice fed a Western diet (WD) results in amelioration of vascular stiffness. Conversely, the role of ERα in the male vasculature in this setting has not been explored. In conditions of overnutrition and insulin resistance, augmented arterial stiffness, endothelial dysfunction, and arterial remodeling contribute to the development of cardiovascular disease. Here, we used a rodent model of decreased ERα expression in ECs [endothelial cell estrogen receptor-α knockout (EC-ERαKO)] to test the hypothesis that, similar to our findings in females, loss of ERα signaling in the endothelium of insulin-resistant males would result in decreased arterial stiffness. EC-ERαKO male mice and same-sex littermates were fed a WD (high in fructose and fat) for 20 weeks and then assessed for vascular function and stiffness. EC-ERαKO mice were heavier than littermates but exhibited decreased vascular stiffness without differences in endothelial-dependent vasodilatory responses. Mesenteric arteries from EC-ERαKO mice had significantly increased diameters, wall cross-sectional areas, and mean wall thicknesses, indicative of outward hypertrophic remodeling. This remodeling paralleled an increased vessel wall content of collagen and elastin, inhibition of matrix metalloproteinase activation and a decrease of the incremental modulus of elasticity. In addition, internal elastic lamina fenestrae were more abundant in the EC-ERαKO mice. In conclusion, loss of endothelial ERα reduces vascular stiffness in male mice fed a WD with an associated outward hypertrophic remodeling of resistance arteries.


Subject(s)
Diet, Western/adverse effects , Estrogen Receptor alpha/genetics , Vascular Remodeling/genetics , Vascular Stiffness/genetics , Animals , Cells, Cultured , Female , Male , Mesenteric Arteries/physiopathology , Mice , Mice, Knockout , Vasodilation/genetics
12.
Cardiovasc Diabetol ; 16(1): 9, 2017 01 13.
Article in English | MEDLINE | ID: mdl-28086951

ABSTRACT

Obese and diabetic individuals are at increased risk for impairments in diastolic relaxation and heart failure with preserved ejection fraction. The impairments in diastolic relaxation are especially pronounced in obese and diabetic women and predict future cardiovascular disease (CVD) events in this population. Recent clinical data suggest sodium glucose transporter-2 (SGLT2) inhibition reduces CVD events in diabetic individuals, but the mechanisms of this CVD protection are unknown. To determine whether targeting SGLT2 improves diastolic relaxation, we utilized empagliflozin (EMPA) in female db/db mice. Eleven week old female db/db mice were fed normal mouse chow, with or without EMPA, for 5 weeks. Blood pressure (BP), HbA1c and fasting glucose were significantly increased in untreated db/db mice (DbC) (P < 0.01). EMPA treatment (DbE) improved glycemic indices (P < 0.05), but not BP (P > 0.05). At baseline, DbC and DbE had already established impaired diastolic relaxation as indicated by impaired septal wall motion (>tissue Doppler derived E'/A' ratio) and increased left ventricular (LV) filling pressure (

Subject(s)
Benzhydryl Compounds/therapeutic use , Blood Pressure/drug effects , Diabetes Mellitus, Type 2/drug therapy , Disease Models, Animal , Glucosides/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors , Ventricular Function, Left/drug effects , Animals , Benzhydryl Compounds/pharmacology , Blood Pressure/physiology , Diabetes Mellitus, Type 2/physiopathology , Diastole/drug effects , Diastole/physiology , Female , Glucosides/pharmacology , Glycemic Index/drug effects , Glycemic Index/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Sodium-Glucose Transporter 2/physiology , Ventricular Function, Left/physiology
13.
Endocrinology ; 157(4): 1590-600, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26872089

ABSTRACT

Consumption of a diet high in fat and refined carbohydrates (Western diet [WD]) is associated with obesity and insulin resistance, both major risk factors for cardiovascular disease (CVD). In women, obesity and insulin resistance abrogate the protection against CVD likely afforded by estrogen signaling through estrogen receptor (ER)α. Indeed, WD in females results in increased vascular stiffness, which is independently associated with CVD. We tested the hypothesis that loss of ERα signaling in the endothelium exacerbates WD-induced vascular stiffening in female mice. We used a novel model of endothelial cell (EC)-specific ERα knockout (EC-ERαKO), obtained after sequential crossing of the ERα double floxed mice and VE-Cadherin Cre-recombinase mice. Ten-week-old females, EC-ERαKO and aged-matched genopairs were fed either a regular chow diet (control diet) or WD for 8 weeks. Vascular stiffness was measured in vivo by pulse wave velocity and ex vivo in aortic explants by atomic force microscopy. In addition, vascular reactivity was assessed in isolated aortic rings. Initial characterization of the model fed a control diet did not reveal changes in whole-body insulin sensitivity, aortic vasoreactivity, or vascular stiffness in the EC-ERαKO mice. Interestingly, ablation of ERα in ECs reduced WD-induced vascular stiffness and improved endothelial-dependent dilation. In the setting of a WD, endothelial ERα signaling contributes to vascular stiffening in females. The precise mechanisms underlying the detrimental effects of endothelial ERα in the setting of a WD remain to be elucidated.


Subject(s)
Diet, Western , Endothelial Cells/metabolism , Estrogen Receptor alpha/metabolism , Vascular Stiffness/physiology , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Aorta, Thoracic/metabolism , Aorta, Thoracic/physiology , Cadherins/genetics , Cadherins/metabolism , Estrogen Receptor alpha/genetics , Female , Femoral Artery/physiology , Immunoblotting , Mice, Knockout , Mice, Transgenic , Microscopy, Atomic Force , Pulse Wave Analysis , Transforming Growth Factor beta/metabolism , Vascular Stiffness/genetics , Vasodilation
14.
G3 (Bethesda) ; 4(6): 1143-5, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24747759

ABSTRACT

Positional cloning in maize (Zea mays) requires development of markers in the region of interest. We found that primers designed to amplify annotated insertion-deletion polymorphisms of seven base pairs or greater between B73 and Mo17 produce polymorphic markers at a 97% frequency with 49% of the products showing co-dominant fragment length polymorphisms. When the same polymorphisms are used to develop markers for B73 and W22 or Mo17 and W22 mapping populations, 22% and 31% of markers are co-dominant, respectively. There are 38,223 Indel polymorphisms that can be converted to markers providing high-density coverage throughout the maize genome. This strategy significantly increases the efficiency of marker development for fine-mapping in maize.


Subject(s)
Genetic Markers , INDEL Mutation , Polymorphism, Single Nucleotide , Zea mays/genetics , Chromosome Mapping , Chromosomes, Plant , Databases, Nucleic Acid , Genetic Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...